我们提供安全,免费的手游软件下载!
已知角a的终边经过点P(-5, y),且sin(a) = -3/6y。我们需要求出y的值以及cos(a)的值。
首先,根据sin(a) = -3/6y,我们可以得出y的值。根据sin(a)的定义,sin(a) = 对边/斜边。在这个问题中,对边为y-0=y,斜边为6。所以,-3/6y = y/6。因此,y/6 = -3/6y。解方程得出y = -3。
接下来,我们需要求出cos(a)的值。根据三角函数的关系,sin^2(a) + cos^2(a) = 1。我们已知sin(a) = -3/6y,所以sin^2(a) = (-3/6y)^2 = 9/36y^2。将sin^2(a)代入cos^2(a) + 9/36y^2 = 1。解方程得出cos^2(a) = 1 - 9/36y^2。计算得出cos^2(a) = 27/36。因此,cos(a) = ±√(27/36) = ±√(3/4)。
热门资讯